Kähler–Einstein submanifolds of the infinite dimensional projective space
نویسندگان
چکیده
This paper consists of two main results. In the first one we describe all Kähler immersions of a bounded symmetric domain into the infinite dimensional complex projective space in terms of the Wallach set of the domain. In the second one we exhibit an example of complete and nonhomogeneous Kähler-Einstein metric with negative scalar curvature which admits a Kähler immersion into the infinite dimensional complex projective space.
منابع مشابه
Spin geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds
From the existence of parallel spinor fields on CalabiYau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is Kähler-Einstein with positive scalar curvature, and...
متن کاملKähler Submanifolds with Lower Bounded Totally Real Bisectional Curvature Tensor
In this paper, we prove that if every totally real bisectional curvature of an n(≥ 3)-dimensional complete Kähler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than c 4(n2−1)n(2n− 1), then it is totally geodesic. Mathematics Subject Classifications: 53C50, 53C55, 53C56.
متن کاملH-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds
H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.
متن کاملIsotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملOptimal Bounds for the Volumes of Kähler-einstein Fano Manifolds
We show that any n-dimensional Ding semistable Fano manifold X satisfies that the anti-canonical volume is less than or equal to the value (n + 1). Moreover, the equality holds if and only if X is isomorphic to the n-dimensional projective space. Together with a result of Berman, we get the optimal upper bound for the anti-canonical volumes of n-dimensional Kähler-Einstein Fano manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008